/** * Transforms a position from window to eye coordinates. * The transform from window to normalized device coordinates is done using components * of (@link czm_viewport} and {@link czm_viewportTransformation} instead of calculating * the inverse of czm_viewportTransformation. The transformation from * normalized device coordinates to clip coordinates is done using positionWC.w, * which is expected to be the scalar used in the perspective divide. The transformation * from clip to eye coordinates is done using {@link czm_inverseProjection}. * * @name czm_windowToEyeCoordinates * @glslFunction * * @param {vec4} fragmentCoordinate The position in window coordinates to transform. * * @returns {vec4} The transformed position in eye coordinates. * * @see czm_modelToWindowCoordinates * @see czm_eyeToWindowCoordinates * @see czm_inverseProjection * @see czm_viewport * @see czm_viewportTransformation * * @example * vec4 positionEC = czm_windowToEyeCoordinates(gl_FragCoord); */ vec4 czm_windowToEyeCoordinates(vec4 fragmentCoordinate) { float x = 2.0 * (fragmentCoordinate.x - czm_viewport.x) / czm_viewport.z - 1.0; float y = 2.0 * (fragmentCoordinate.y - czm_viewport.y) / czm_viewport.w - 1.0; float z = (fragmentCoordinate.z - czm_viewportTransformation[3][2]) / czm_viewportTransformation[2][2]; vec4 q = vec4(x, y, z, 1.0); q /= fragmentCoordinate.w; if (czm_inverseProjection != mat4(0.0)) { q = czm_inverseProjection * q; } else { float top = czm_frustumPlanes.x; float bottom = czm_frustumPlanes.y; float left = czm_frustumPlanes.z; float right = czm_frustumPlanes.w; float near = czm_currentFrustum.x; float far = czm_currentFrustum.y; q.x = (q.x * (right - left) + left + right) * 0.5; q.y = (q.y * (top - bottom) + bottom + top) * 0.5; q.z = (q.z * (near - far) - near - far) * 0.5; q.w = 1.0; } return q; }